TECHNICAL ISO/IEC
REPORT TR
25438

First edition
2006-08-01

Information technology — Common
Language Infrastructure (CLI) —
Technical Report: Common Generics

Technologies de l'information — Infrastructure commune de
langage (ICL) — Rapport technique: Génériques communs

Reference number
ISO/IEC TR 25438:2006(E)

g . © ISO/IEC 2006

ISO/IEC TR 25438:2006(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2006 — All rights reserved

ISO/IEC TR 25438:2006(E)

Contents Page
o] =NV o T v
L e Yo 11 o) T vi
1 T o - PSSP 1
2 RAtioNaAle........co e e 1
21 Reference vs. Value tUPIES.... ..o ccceirr s e s e s s mse s e e s s s amnn e e e e e s e s e e e e e eesnnnnn 1
2.2 Interaction with other standard types.........cccocoriirrrrrrrrrrrrrrrrrrr s 2
3 L0 Y= T 2
31 0 1 1= 87 1= 2
3.2 Function and procedure tYPes sssmsr e e e s e e mnne e e s nnnn 2
3.3 0T ST ST SRRR 2
3.4 10 o1 1o o - 1 P 3
3.5 1 4T 3
4 AcCtion delegatescoiiiiiiiiiir i 3
41 System.Action delegate ... ————————————————— 3
4.2 System.Action<A, B> delegate..........ccccomiiiiiiiccccceceriri e e 4
4.3 System.Action<A, B, C> delegatecccciimiiiiiiicisecririi s ssccsecrre s s s e e s mnn e e 5
4.4 System.Action<A, B, C, D> delegate.......cccccmriiiiicciseceiiiiicsscccscrren s s e e e s 6
4.5 System.Action<A, B, C, D, E> delegatec.ceccccoemiiiiiicscccceecernn s ccsssnre e s sssmnn e e e s e s 8
5 System.DelegateCast CIASScccccviiiiciiimiriiii s e sssser e e e e s s s ssmn e e e s e e s s s nmm e e e e e eesansmnneennenan 9
5.1 DelegateCast.ToFunction<T, Boolean>(System.Predicate<T>) method........c.ccccceecccrrrrrrnnnnneee 10
5.2 DelegateCast.ToPredicate<T>(System.Function<T, System.Boolean>) method......................... 10
5.3 DelegateCast.ToFunction<T, U>(System.Converter<T, U>) method..........cccccmririiiiiiiiicnniinnnnes 1
5.4 DelegateCast.ToConverter<T, U>(System.Function<T, U>) method............ccccririiinniiiiicnnniienn, 12
5.5 DelegateCast.ToFunction<T, T, System.Int32>(System.Comparison<T>) method 12
5.6 DelegateCast.ToComparison<T>(System.Function<T, T, System.Int32>) method 13
6 System.Either<A, B> StruCture ... 13
6.1 Either<A, B>.Equals(System.Object) method.............cccriiiiiiccccccrrrr e 15
6.2 Either<A, B>.Equals(Either<A, B>) Methodcoo i sssr e e 16
6.3 Either<A, B>.First Propertycccccccccriiiiiiiriririrsssesnsnsssnsnnns 17
6.4 Either<A, B>.GetHashCode() method ... s 17
6.5 Either<A, B>.ISFirst Property........cccciciiriiirirsrsssnssnssssnsnnns 18
6.6 Either<A, B>.1SSeCONd Property........cccccciimiiiiicissminreiisssssssssseesesssssssssssssseesssssssssnssssensssssssssnnssssnsssssnn 19
6.7 Either<A, B>.op_Equality(Either<A, B>, Either<A, B>) method............ccccoiiriiiiiiniiicnceee 19
6.8 Either<A, B>.op_Inequality(Either<A, B>, Either<A, B>) method ..., 20
6.9 Either<A, B>.SeCONA PrOPEItY........coociiiiiiiiiiciirmrire e sr s sssme e e e s s s s s s smne e s s se s s s snme s e e e s s e sa s s nmnenesnnnnn 21
6.10 Either<A, B>.MakeFirst(A aValue) method...........ccccoomiiiiiciiinric e 22
6.11 Either<A, B>.MakeSecond(B bValue) method ... 22
6.12 Either<A, B>.ToString() method ..o 23
6.13 Either<A, B>(A) CONSLIUCLONociiiiiiiiccc e s e e e e s sssme e e e s s s s smn e e e e e e e sn s s mmn e e e e essannmnnes 23
6.14 Either<A, B>(B) CONSIIUCLONccoiiiiiiiiccecriir s ccssne s e s s s s s ssms s e e s e s s s snme e e s ee s s s nnmn e e e e e snsannmnnes 24
6.15 A Either<A, B>.op_Explicit(System.Either<A, B>) methodcc.cco oo 25
6.16 B Either<A, B>.op_Explicit(System.Either<A, B>) methodc.cco oo 26
6.17 Either<A, B>.op_Implicit(A) Method ... e s nnes 27
6.18 Either<A, B>.op_Implicit(B) method ...t ssnr e ssme e e nnes 28
7 FUuNction Delegates..........oocoiiiiiiiiiin e s 29
71 System.Function<A > delegate ..o ———— 29
7.2 System.Function<A, B> delegate..........ccccvciiiiiiiiniiniir i s 30
7.3 System.Function<A, B, C> delegatecooiriiiiiiiiiiinin s s 31

© ISO/IEC 2006 — All rights reserved iii

ISO/IEC TR 25438:2006(E)

7.4
7.5
7.6

8.1
8.2

8.4
8.5

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

10
10.1

System.Function<A, B, C, D> delegate.........c..ccccomiriimiiiiccccnerrer s ccssssess e s e s s sssmseee e s e s s s mnnne s 32
System.Function<A, B, C, D, E> delegatecccooriimiiiiccccieerrrer s cccssene e s ss s ssssne e s mnmnenes 33
System.Function<A, B, C, D, E, F> delegatecccccmmiiieicccieemirirrisscccsscee s ssssse e s s s mnmnenes 35
System.OptioNal<T> SrUCLUIe............cuiieiie et r e e s nm e e e e e s s s ammn e e e e nan 36
(07 o1 TeT T=TES I (11D I] 4 £53 1 1 Te3 o o PSSR 38
Optional<T>.CompareTo(System.Object) method.............cccccmmmiiiiiccciscrrr e 38
Optional<T>.CompareTo(Optional<T>) Method...........oo e 40
Optional<T>.Equals(System.Object) method............ccccoiiiiiiinii e 41
Optional<T>.Equals(Optional<T>) method............ e 42
Optional<T>.FromNullable<U>(Nullable<U>) method.............ccccociiiiiiiiiniic e 43
Optional<T>.FromOptional(System.Optional<T>) method.............cccoiimriiiicccc e 44
Optional<T>.GetHashCode() Method..........cccceiiiiiiiiiiniii 45
Optional<T>.GetValueOrDefault() method............cciiiiiiiicccicrr e 45
Optional<T>.GetValueOrDefault(T) method ... e 46
Optional<T>.HasValue Propertyccccccccerrriiiiiicssemerensissssssssssesesssssssssssssssssesssssssssnssssessssssssssnnesssas 46
Optional<T>.op_Equality(Optional<T>, Optional<T>) method..........cccccmrrriiiciiicrrere e, 47
Optional<T>.op_Explicit(System.Optional<T>) methodcccceeeicciiriiiic e 438
Optional<T>.op_IMPIicit(T) Method ... e s 49
Optional<T>.op_Inequality(Optional<T>, Optional<T>) methodccccoriiiiiiiiiirriiccceeeee, 50
Optional<T>.ToNullable<U>(Optional<U>) method...........ccccoiiiiiiiiiiiinini e 51
Optional<T>.ToOptional(T) Method ... —————— 51
Optional<T>.ToString() Method ... ——— 52
Optional<T>.Value ProPerty ... ssmnr e smne s e e s sa s s s mnne e e s s s s s e mmne e e e e s sassmnneeeesan 53
Optional<T>.INullableValue.Value Propertyciinmmrriinscscsssmeree s sssmse e s s ssmme e 53
Tuple structures System.Tuple<A, B> ... System.Tuple<A, B, ..., |, J> .. 54
TUuple<A, ...3>() CONSEIUCTOIS ... ccccecrrr e s sss s e e s s s sssne e e s ee s s s nnmn e e e e e e sannnnnes 56
Tuple<A, ...>.Equals(System.Object) method............cccciiriiiiccciiiri e 56
Tuple<A, ...>.Equals(Tuple<A, ...>) Method............iiriicc e s 57
Tuple<A, ...>.ItemA, Tuple<A, B, ...>.ltemB, ... Tuple<A, B, ..., |, J>.IltemJ field.......................... 58
Tuple<A, ...>.GetHashCode() mMethod..........oiiiiiccccccrir e 58
Tuple<A, ...>.op_Equality(Tuple<A, ...>, Tuple<A, ...>) method ... 59
Tuple<A, B>.op_| ImpI|C|t(KeyVaIuePa|r<A B>) method .. 60
Tuple<A, B>.op_Implicit(Tuple<A, B>) method.......... s 60
Tuple<A, ...>.0p_Inequality(Tuple<A, ...>, Tuple<A, ...>) method ... 61
Tuple<A, ...>.ToString() Method ... ———- 62
853 o (=] 0 L0 T =T 4 T o 62
L0131 T 63

© ISO/IEC 2006 — All rights reserved

ISO/IEC TR 25438:2006(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, the joint technical committee may propose the publication of a Technical Report
of one of the following types:

— type 1, when the required support cannot be obtained for the publication of an International Standard,
despite repeated efforts;

— type 2, when the subject is still under technical development or where for any other reason there is the
future but not immediate possibility of an agreement on an International Standard;

— type 3, when the joint technical committee has collected data of a different kind from that which is
normally published as an International Standard (“state of the art”, for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether
they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to
be reviewed until the data they provide are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 25438 was prepared by Ecma International (as Ecma TR/89) and was adopted, under a special

“fast-track procedure”, by Joint Technical Committee ISO/IEC JTC 1, Information technology, in parallel with
its approval by national bodies of ISO and IEC.

© ISO/IEC 2006 — All rights reserved \

ISO/IEC TR 25438:2006(E)

Introduction

This Technical Report defines a collection of types that are intended to enhance the common language nature
of the CLI, by facilitating language inter-operation. The collection includes generic tuples, functions, actions,
optional value representation, a type that can contain a value of one of two different types, and a utility filler

type.

These types are experimental and will be considered for inclusion in a future version of the CLI International
Standard. A reference implementation, written in C#, is included (see the accompanying file
CommonGenericsLibrary.cs). This implementation source is also available from
http://kahu.zoot.net.nz/ecma. A binary version is also available from that site, along with any updates
to the proposal.

Feedback on these types is encouraged. (Please send comments to ecmacli@zoot.net.nz.)

Vi © ISO/IEC 2006 — All rights reserved

http://kahu.zoot.net.nz/ecma

TECHNICAL REPORT ISO/IEC TR 25438:2006(E

Information technology — Common Language Infrastructure
(CLI) — Technical Report: Common Generics

1 Scope

The CLI standard libraries (ISO/IEC 23271) provide a collection of common types that can be used by multiple
languages. With the addition of generics to the CLI, the standard libraries have been extended to include a
number of common generic types, in particular, collections. However, at present, these libraries do not include
many simple generic types found in a number of different languages. Any language which uses these
common types must implement them rather than deferring to the CLI library, thereby reducing language inter-
operability. This Technical Report addresses this issue by providing a number of these common types.

Generic tuples (product types) are standard in a number of languages: C++ (template pPair), Ada, Haskell,
and Standard ML (SML). However, languages differ in the number of pre-defined tuple sizes supported by
their standard libraries; e.g. C++ provides just one (Pair) while Haskell provides eight (sizes 2 to 9) and SML
allows any size of tuple. This Technical Report provides nine (sizes 2 to 10).

Generic programming encourages “higher order” programming where generic functions (methods) take
function (delegate) type arguments that have generic types. Examples include Ada’s with and generic
constraints, and function arguments in Haskell and SML. In the CLI, function values are provided in the form
of delegates, so this proposal defines standard generic delegate types for functions (which return a value) and
procedures (which do not).

Another two types that occur in a number of languages are an optional type, which either contains a value of
some other type or an indication that such a value is not present; and an either type, which holds a value of
one of two possible types and an indication of which one is present. This proposal provides both of these.

Note The optional type is similar to, but different from, the type system.Nullable.

Finally, in existing generic languages, a need has been found for a filler type to be used when a particular

generic parameter is not required for a particular use of the generic type. A standard one-value type is often
provided for this purpose, often called unit or void. This Technical Report includes such a type.

© ISO/IEC 2006 — All rights reserved 1

